Муниципальное бюджетное общеобразовательное учреждение «Мурманский академический лицей»

РАБОЧАЯ ПРОГРАММА КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ

Предмет: Химия. 10 класс

«Взаимное влияние атомов в молекулах органических соединений»

Программа рассмотрена МО учителей естественно- научного цикла МБОУ МАЛ Программа согласована: зам. директора по УВР Программа принята на педагогическом совете

Протокол № 5 от 29. 08.2024

29.08.2024 /Е.Н. Иванова/

/L.II.

Протокол № 22 от 30.08.2024

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа элективного курса по химии составлена на основе: программы ФГОС СОО, утвержденным приказом Министерства образования и науки Российской Федерации от 17.05. 2012 г. № 413 (с изменениями от 12.08.2022) с учетом ФОП СОО, утвержденной приказом Министерства просвещения РФ от 18.05.2023 № 371; на основе Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», требований к результатам освоения федеральной образовательной программы среднего общего образования (ФОП СОО), представленных в Федеральном государственном образовательном стандарте СОО, с учётом Концепции преподавания учебного предмета «Химия» в образовательных организациях Российской Федерации, реализующих основные образовательные программы, и основных положений «Стратегии развития воспитания в Российской Федерации на период до 2025 года» (Распоряжение Правительства РФ от 29.05. 2015 № 996 - р.).

В системе естественнонаучного образования химия как учебный предмет занимает важное место в познании законов природы, формировании научной картины мира, химической грамотности, необходимой для повседневной жизни, навыков здорового и безопасного для человека и окружающей его среды образа жизни, а также в воспитании экологической культуры, формировании собственной позиции по отношению к химической информации, получаемой из разных источников.

Успешность изучения учебного предмета связана с овладением основными понятиями химии, научными фактами, законами, теориями, применением полученных знаний при решении практических задач.

Содержание базового курса позволяет раскрыть ведущие идеи и отдельные положения, важные в познавательном и мировоззренческом отношении: зависимость свойств веществ от состава и строения; обусловленность применения веществ их свойствами; материальное единство неорганических и органических веществ; возрастающая роль химии в создании новых лекарств и материалов, в экономии сырья, охране окружающей среды.

Рабочая программа предназначена для обучающихся 10 классов МБОУ МАЛ, изучающих химию на базовом уровне (профиль: информационно-технологический, социально-экономический), но проявляющих интерес к предмету, связывающих дальнейшую профессиональную деятельность с инженерно-техническими, химико-технологическими, медико-биологическими специальностями.

Цель изучения элективного курса: расширение и углубление знаний по предмету, развитие предметной и информационно-коммуникационной компетентностей учащихся.

Элективный курс рассчитан на 34 часа (1 час в неделю).

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ

Личностные результаты в соответствии с системно-деятельностным подходом в структуре выделяют следующие составляющие:

- 1) сформированность мировоззрения, соответствующего современному уровню развития науки
- 2) готовность и способность к самостоятельной, творческой и ответственной деятельности;
- 3) сформированность экологического мышления, понимания влияния социально-экономических процессов на состояние природной и социальной среды;

Метапредметные результаты включают:

- 1) умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
- 2) владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- 4) готовность и способность к самостоятельной информационно-познавательной деятельности, владение навыками получения необходимой информации из словарей разных типов, умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 5) умение использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения;
- 6) владение языковыми средствами умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
- 7) владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Предметные результаты отражают:

- 1) сформированность представлений о месте химии в современной научной картине мира; понимание роли химии в формировании кругозора и функциональной грамотности человека для решения практических задач;
 - 2) владение основополагающими химическими понятиями, теориями, законами и закономерностями; уверенное

пользование химической терминологией и символикой;

- з) владение основными методами научного познания, используемыми в химии: наблюдение, описание, измерение, эксперимент; умение обрабатывать, объяснять результаты проведенных опытов и делать выводы; готовность и способность применять методы познания при решении практических задач;
- 4) сформированность умения давать количественные оценки и проводить расчеты по химическим формулам и уравнениям;
 - 5) владение правилами техники безопасности при использовании химических веществ; сформированность собственной позиции по отношению к химической информации, получаемой из разных источников.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Раздел	Кол-во часов по рабочей программе
Химические связи и реакции органических соединений	5
Углеводороды	10
Кислородсодержащие органические соединения	12
Азотсодержащие органические соединения	5
Всего	32
Резервное время	2
Итого	34

Содержание учебного предмета

Раздел (к-во часов)	Содержание	УУД
Химические связи и	Валентные состояния атома углерода. Гибридизация	- устанавливать причинно-
реакции	атомных орбиталей. Зависимость свойств веществ от	следственные связи между
органических	химического строения молекул. Изомерия и изомеры.	свойствами вещества и его составом
соединений (5ч)	Классификация и особенности органических реакций.	и строением;
	Реакционные центры. Первоначальные понятия о типах и	- объяснять природу и
	механизмах органических реакций. Гомолитический и	способы образования ковалентной
	гетеролитический разрыв ковалентной химической связи.	химической связи;
	Свободнорадикальный и ионный механизмы реакции.	- определять механизм
	Понятие о нуклеофиле и электрофиле. Индуктивный и	реакции в зависимости от условий
	мезомерный эффекты.	проведения реакции и
		прогнозировать возможность
		протекания химических реакций на
		основе типа химической связи и
		активности реагентов.
Углеводороды (10ч)	Алканы. Электронное и пространственное строение	- устанавливать зависимость
	молекулы метана. sp^3 гибридизация орбиталей атомов	реакционной способности
	углерода. Механизм реакции свободнорадикального	органических соединений от
	замещения. Получение алканов. Реакция Вюрца.	характера взаимного влияния атомов
	Циклоалканы. Строение молекул циклоалканов.	в молекулах с целью
	Изомерия циклоалканов: углеродного скелета,	прогнозирования продуктов реакции
	межклассовая, пространственная (цис-транс-изомерия).	- проводить расчеты на основе
	Специфика свойств циклоалканов с малым размером	химических формул и уравнений
	цикла. Реакции присоединения и радикального	реакций: нахождение молекулярной
	замещения.	формулы органического вещества по
	Алкены. Электронное и пространственное строение	его плотности и массовым долям
	молекулы этилена. sp^2 -гибридизация орбиталей атомов	элементов, входящих в его состав, или

углерода. *о-* и п-связи. Реакции электрофильного присоединения как способ получения функциональных производных углеводородов. Правило Марковникова, его электронное обоснование. Реакции окисления. Промышленные и лабораторные способы получения алкенов. *Правило Зайцева*.

Апкалиены Классификация апкалиенов по

Алкадиены. Классификация алкадиенов по взаимному расположению кратных связей в молекуле. Особенности электронного и пространственного строения сопряженных алкадиенов. Получение алкадиенов.

Алкины. Электронное и пространственное строение молекулы ацетилена. *sp*-гибридизация орбиталей атомов углерода. *Реакции замещения у алкинов*.

Арены. Современные представления об электронном и пространственном строении бензола. Химические свойства бензола: реакции электрофильного замещения (нитрование, галогенирование); (гидрирование, присоединения галогенирование) как доказательство непредельного характера бензола. Получение бензола. Особенности химических свойств толуола. Взаимное влияние атомов в эффекты молекуле толуола. Ориентационные заместителей.

по продуктам сгорания; расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси).

Кислородсодержащие органические соединения (12ч)

Спирты. Водородная связь между молекулами и ее влияние на физические свойства спиртов. Химические свойства: взаимодействие с натрием как способ установления наличия гидроксогруппы, с

- подбирать реагенты, условия и определять продукты реакций, позволяющих реализовать лабораторные и промышленные

галогеноводородами как способ получения растворителей, внутри- и межмолекулярная дегидратация.

Фенол. Строение молекулы фенола. Взаимное влияние атомов в молекуле фенола

Альдегиды и кетоны. Классификация альдегидов и кетонов. Строение предельных альдегидов. Электронное и пространственное строение карбонильной группы. Карбоновые кислоты. Строение предельных одноосновных карбоновых кислот. Электронное и пространственное строение карбоксильной группы. Влияние заместителей в углеводородном радикале на силу карбоновых кислот. Особенности химических свойств муравьиной кислоты. Получение предельных одноосновных карбоновых кислот: окисление алканов, алкенов, первичных альдегидов. Важнейшие представители карбоновых кислот: муравьиная, уксусная и бензойная. Высшие предельные и непредельные карбоновые кислоты. Углеводы. Глюкоза как альдегидоспирт. Фруктоза как изомер глюкозы. Рибоза и дезоксирибоза. Идентификация органических соединений. Г енетическая связь между классами органических соединений.

способы получения важнейших неорганических и органических веществ:

- устанавливать
 зависимость реакционной способности органических соединений от характера взаимного влияния атомов в молекулах с целью прогнозирования продуктов реакции;
- проводить расчеты на основе химических формул уравнений реакций: расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного; расчеты теплового эффекта реакции; расчеты объемных отношений газов при химических реакциях; расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества;
- устанавливать генетическую связь между классами неорганических и органических веществ для обоснования

		принципиальной возможности
		•
		получения неорганических и
		органических соединений заданного
		состава и строения.
Азотсодержащие	Амины. Электронное и пространственное строение	- объяснять электронное и
органические	предельных аминов. Причины ослабления основных	пространственное строение
соединения (5ч)	свойств анилина в сравнении с аминами предельного	предельных аминов;
	ряда. Получение аминов алкилированием аммиака и	- объяснять причины
	восстановлением нитропроизводных углеводородов.	ослабления основных свойств
	Анилин как сырье для производства анилиновых	анилина в сравнении с аминами
	красителей. Синтезы на основе анилина.	предельного ряда.
	Аминокислоты и белки. Строение аминокислот.	- устанавливать
		зависимость реакционной
		способности органических
		соединений от характера взаимного
		влияния атомов в молекулах с целью
		прогнозирования продуктов
		реакции.

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Дата	Тема урока
	Элементы содержания/Элементы дополнительного содержания
	Химические связи и реакции органических соединений (5ч)
	Валентные состояния атома углерода. Гибридизация атомных орбиталей.
	Зависимость свойств веществ от химического строения молекул. Изомерия и изомеры.
	Классификация и особенности органических реакций. Реакционные центры. Первоначальные понятия о
	типах и механизмах органических реакций.
	Гомолитический и гетеролитический разрыв ковалентной химической связи. Свободнорадикальный и
	ионный механизмы реакции. Понятие о нуклеофиле и электрофиле.
	Индуктивный и мезомерный эффекты.
	Углеводороды (10ч)
	Алканы. Электронное и пространственное строение молекулы метана. sp^3 -гибридизация орбиталей атомов
	углерода. Механизм реакции свободнорадикального замещения. Получение алканов. Реакция Вюрца.
	Циклоалканы. Строение молекул циклоалканов. Изомерия циклоалканов: углеродного скелета,
	межклассовая, пространственная (цис-транс-изомерия).
	Специфика свойств циклоалканов с малым размером цикла. Реакции присоединения и радикального
	замещения.
	Алкены. Электронное и пространственное строение молекулы этилена. sp^2 -гибридизация орбиталей
	атомов углерода. σ- и π-связи.
	Реакции электрофильного присоединения как способ получения функциональных производных
	углеводородов. Правило Марковникова, его электронное обоснование.
	Реакции окисления. Промышленные и лабораторные способы получения алкенов. Правило Зайцева.
	Алкадиены. Классификация алкадиенов по взаимному расположению кратных связей в молекуле.
	Особенности электронного и пространственного строения сопряженных алкадиенов. Получение
	алкадиенов.
	Дата

8/13	Алкины. Электронное и пространственное строение молекулы ацетилена. <i>sp</i> -гибридизация орбиталей
	атомов углерода. Реакции замещения у алкинов.
9/14	Арены. Современные представления об электронном и пространственном строении бензола. Химические
	свойства бензола: реакции электрофильного замещения (нитрование, галогенирование); присоединения
	(гидрирование, галогенирование) как доказательство непредельного характера бензола.
10/15	Получение бензола. Особенности химических свойств толуола. Взаимное влияние атомов в молекуле
	толуола. Ориентационные эффекты заместителей.
	Кислородсодержащие органические соединения (12ч)
1/16	Спирты. Водородная связь между молекулами и ее влияние на физические свойства спиртов.
2/17	Химические свойства: взаимодействие с натрием как способ установления наличия гидроксогруппы, с
	галогеноводородами как способ получения растворителей, внутри- и межмолекулярная дегидратация.
3/18	Фенол. Строение молекулы фенола. Взаимное влияние атомов в молекуле фенола.
4/19	Альдегиды и кетоны. Классификация альдегидов и кетонов. Строение предельных альдегидов.
	Электронное и пространственное строение карбонильной группы.
5/20	Карбоновые кислоты. Строение предельных одноосновных карбоновых кислот. Электронное и
	пространственное строение карбоксильной группы.
6/21	Влияние заместителей в углеводородном радикале на силу карбоновых кислот. Особенности химических
	свойств муравьиной кислоты.
7/22	Получение предельных одноосновных карбоновых кислот: окисление алканов, алкенов, первичных
	спиртов, альдегидов. Важнейшие представители карбоновых кислот: муравьиная, уксусная и бензойная.
8/23	Высшие предельные и непредельные карбоновые кислоты.
9/24	Углеводы. Глюкоза как альдегидоспирт. <i>Фруктоза как</i>
	изомер глюкозы. Рибоза и дезоксирибоза.
10/25	Идентификация органических соединений.
11/26	Генетическая связь между классами органических соединений.
12/27	Генетическая связь между классами органических соединений.
	Азотсодержащие органические соединения (5ч)
1/28	Амины. Электронное и пространственное строение предельных аминов.

2/29	Причины ослабления основных свойств анилина в сравнении с аминами предельного ряда.
3/30	Получение аминов алкилированием аммиака и восстановлением нитропроизводных углеводородов.
4/31	Анилин как сырье для производства анилиновых красителей. Синтезы на основе анилина.
5/32	Аминокислоты и белки. Строение аминокислот.
Резервное время (2ч)	
33	
34	